THE N-TERMINAL SEQUENCE OF HUMAN LACTOTRANSFERRIN: ITS CLOSE HOMOLOGY WITH THE AMINO-TERMINAL REGIONS OF OTHER TRANSFERRINS

J. JOLLÈS*, J. MAZURIER**, M.-H. BOUTIGUE*, G. SPIK**, J. MONTREUIL** and P. JOLLÈS*

*Laboratoire des Protéines, Université de Paris V, 45 rue des Saints-Pères, F-75270 Paris Cedex 06, and **Laboratoire de Chimie
Biologique de l'Université des Sciences et Techniques de Lille-I, B.P. No. 36, F-59650 Villeneuve d'Ascq

Received 24 July 1976

1. Introduction

Human lactotransferrin (also called lactoferrin) [1-3] consists of a single polypeptide chain of molecular weight 76 500 [4,5] and possesses two carbohydrate groups which are conjugated to the protein by an asparaginyl-N-acetylglucosamine linkage [6]: their structures were established by Spik et al. [7,8]. However, the present knowledge of the amino acid sequence of human lactotransferrin remains very limited: some cyanogen bromide fragments have been purified and analyzed [9] and six short cysteic acid containing peptides [10] as well as short tryptic and chymotryptic glycopeptides [7,8,11] have been sequenced. Finally glycine has been identified as the N-terminal amino acid [10].

The present paper is dealing with the establishment of the N-terminal sequence of human lactotransferrin and of the corresponding cyanogen bromide fragment. Extensive similarities were thus demonstrated between the N-terminal regions of the ovo-, serum- and lactotransferrins.

2. Materials and methods

Human lactotransferrin was obtained according to Chéron et al. [12]. The protein was reduced following the procedure of Crestfield et al. [13]; iodoacetamide was employed for the alkylation step. The preparation and purification of the cyanogen bromide (CNBr) fragments were reported by Mazurier et al. [9 and unpublished results].

The N-terminal amino acids of the protein and of

the CNBr-fragment were identified by the dansylation procedure. Automated Edman degradation was carried out in a Socosi Sequencer Model PS-100, by the quadrol double-cleavage method [14]; dithioerithrytol was added in 1-chlorobutane (10 mg/l). The thiazolinones were converted into the corresponding phenylthiohydantoin (PTH)-amino acids; the latter were characterized, as previously reported [15], by thin-layer chromatography, by gas-liquid chromatography (Beckman GC 45 chromatograph) and by chromatography of the free amino acids (Technicon amino acid Autoanalyzer) regenerated from the PTH-amino acids (150°C; 24 h; 6 M HCl containing 1/2000 2-mercaptoethanol).

The chymotryptic digestion of CNBr-fragment F-V' was performed during 24 h at 37°C in 0.05 M NH₄HCO₃ with an enzyme/substrate ratio of 1/20. The chymotryptic peptides were purified by paper electrophoresis (Whatman No. 1) at pH 6.5 (pyridine—water—acetic acid, 100: 900: 4, v/v/v) and 50 V/cm.

3. Results

- 3.1. N-terminal sequence of human lactotransferrin
 By the dansylation procedure, Gly was characterized as the N-terminal amino acid of the protein.
 By automated Edman degradation, the ten first amino acids could be identified (table 1).
- 3.2. The N-terminal cyanogen bromide fragment of human lactotransferrin: characterization of the first 24 amino acids of the protein
 7 CNBr-fragments (F-I to F-VII) have so far been

Table 1

N-terminal sequences of human lactotransferrin and of the cyanogen bromide fragment F-V' (N-terminal moiety of the intact lactotransferrin molecule). Methods of identification were as follows: (a) +, PTH-derivative determined by thin-layer chromatography; cysteine was determined as PTH-S-carbox-amidomethylcysteine; (b) PTH-amino acid determined by gas—liquid chromatography, yield %; (c) amino acid determined with an Autoanalyzer after regeneration, % of recovery.

	Human lactotransferrin				CNBr-fragment F-V'			
Sequence position	a	b	c	Residue	a	ь	c	Residue
1	Gly	Gly (18)	Gly (20)	Gly	Gly	Gly (15)	Gly (18)	Gly
2	Arg*		Arg (4)	Arg			Arg (7)	Arg
3	Arg*		Arg (4.2)	Arg			Arg (7)	Arg
4	Arg*		Arg (4.8)	Arg			Arg (9)	Arg
5	Arg*		Arg (4)	Arg			Arg (9)	Arg
6	Ser	Ser (11)		Ser	Ser	Ser (17)		Ser
7	Val	Val (12)	Val (12)	Val	Val	Val (24)	Val (19)	Val
8	Gln		Glu (8)	Gln	Gln		Glu (14)	Gln
9	Trp	Trp (5)		Trp	Trp	Trp (15)		Trp
10	Cys		Cys (1)	Cys	Cys	Cys	Cys (2)	Cys
l1					Ala	Ala (18)	Ala (14)	Ala
12					Val	Val (18)	Val (14)	Val
13					Ser	Ser (13)		Ser
14					Gln		Glu (10)	Gln
15					Pro	Pro (5)	Pro (3)	Pro
16					Glu		Glu (4)	Glu
17					Ala	Ala (7)	Ala (5)	Ala
18					Thr	Thr		Thr
19					Lys		Lys (4)	Lys
20					Cys	Cys	Cys(0.5)	Cys
21					Phe	Phe (2)	Phe (2)	Phe
22					Gln		Glu (1)	Gln
23					Trp	Trp (0.5)		Trp
24					Gln			Gln

^{*} Characterized by thin-layer chromatography during 3.5 h (instead of 0.5 h) in solvent 7 (15) and staining with the Sakaguchi reagent.

Table 2

Mobility m (at pH 6.5) values, yields and structures of the chymotryptic peptides of fragment F-V' of human lactotransferrin. m = 0 for Gly; m = +1 for Arg; m = -1 for CySO₂H.

Peptide	m	Yield (%)	Structure
C-1	+ 1.15	35	Gly-Arg-Arg-Arg
C-2	0	35	Ser-Val-Gln-Trp
C-3	-0.25	5 0	Cys-Ala-Val-Ser-Gln-Pro-Glu-Ala-Thr-Lys-Cys-Phe
C-4	-0.56	15	PyrGlu*-Trp
C-5	+ 0.58	32	Gln-(Asx, Ser, Ala, Val, Arg,)-HSer*
C-6**	+0.33	34	Gln-Trp-Gln-(Asx, Ser, Ala, Val, Arg ₂)-HSer*

^{*} PyrGlu, pyrrolidonecarboxylic acid; HSer, homoserine.

^{**} C-6 = C-4 + C-5.

Table 3

Homology of the amino-terminal regions of human lactotransferrin (this study), human serum transferrin [16] and hen ovotransferrin [18] Θ : deletion.

76		
Lactotransferrin	1 Gly-Arg-Arg-Arg-Ser-Val-Gln-Trp-Cys-Ala-Val-Ser-Gln-Pro-Glu-Ala-Thr-Lys-Cys-Phe-Gln-Trp-Gln-	
Serum transferrin	Val-Pro-Asp-Lys- 4 -Thr-Val-Arg-Trp-Cys-Ala-Val-Ser-Glu-His-Glu-Ala-Thr-Lys-Cys-Gln-Ser-Phe-Arg-Asp-	
Ovotransferrin	Ala-Pro-Pro-Lvs- \theta - Ser-Val Arg-Trp-Cvs-Thr-Ile-Ser-Ser-Pro-Glu-Gln-Lvs-Lvs-Cvs-Asn-Asn-Leu-Arg-Asp-	

isolated [9]. During further purification of fragment F-V, a peptide F-V' was obtained by filtration on Biogel P6 with 10% acetic acid as eluent followed by chromatography on Dowex 1 × 2 with a pyridine (10%)—acetic acid buffer of pH 8.4.

Its amino acid composition was established (residues/mole between parentheses): Asp (1), Thr (1), Ser (3), Glu (5), Pro (1), Gly (1), Ala (3), Cys (2), Val (3), Phe (1), Trp (2), Lys (1), Arg (6), H.Ser (1). F-V' was submitted to automated Edman degradation. Table 1 indicates that this fragment constitutes the N-terminal region of human lactotransferrin; a sequence constituted by the first 24 amino acids was established, and this result is reported for the first time.

Fragment F-V' was further submitted to a chymotryptic digestion. Table 2 indicates the mobilities, yields and structures of six chymotryptic peptides (C-1 to C-6) in the order as they appear in the sequence. Peptide C-6 was composed of peptides C-4 + C-5; in C-4, glutamine was characterized as pyrrolidone-carboxylic acid. An unusual chymotryptic split was observed after the fourth arginine residue of F-V'. The study of peptides C-1 to C-6 corroborated the data established by automated Edman degradation.

4. Discussion

4.1. Comparison of the amino terminal regions of 3 transferrins

From the N-terminal sequence of human serum transferrin which we previously published [16] and present data concerning human lactotransferrin, the alignments proposed in table 3 could be constructed; they demonstrate strikingly the extensive similarity between the N-terminal regions of the two proteins. We point out more particularly the satisfactory alignment of the cysteinyl residues present in both sequences: this was not possible when the N-terminal sequence of serum transferrin proposed by Sutton and Brew [17] was considered. Our results were in accordance with the highly conservative behaviour of cysteinyl residues during evolution, a fact illustrated by several other published phylogenetic protein data. Table 3 also includes William's recently established long N-terminal sequence of hen ovotransferrin

quoted, without details, by Bluard-Deconinck et al. [18] despite the fact that it differs from previously published data by Elleman and Williams [19]; indeed the N-terminal sequence of hen transferrin presents again a close homology with the corresponding sequences of the two human transferrins.

Acknowledgments

This research was supported in part by the C.N.R.S. (ER. 102 and LA 217), the I.N.S.E.R.M. (group U-116) and the D.G.R.S.T. (contract 75.7.1334).

References

- [1] Montreuil, J. and Mullet, S. (1960) C. R. Acad. Sci. Paris 250, 1736-1737.
- [2] Montreuil, J., Tonnelat, J. and Mullet, S. (1960) Biochim. Biophys. Acta 45, 413-421.
- [3] Masson, P. L., Heremans, J. F., Prignot, J. J. and Wauters, G. (1966) Thorax 21, 538-544.
- [4] Querinjean, P., Masson, P. L. and Heremans, J. F. (1971) Eur. J. Biochem. 20, 420-425.
- [5] Spik, G. (1971) Ann. Nutrit. 25, A81-A90.
- [6] Spik, G., Monsigny, M. and Montreuil, J. (1966) C. R. Acad. Sci. Paris 263, 893-896.
- [7] Spik, G., Vandersyppe, R., Montreuil, J., Han, K. K. and Tetaert, D. (1974) FEBS Lett. 38, 213-216.
- [8] Spik, G., Vandersyppe, R., Fournet, B., Bayard, B., Charet, P., Bouquelet, S., Strecker, G. and Montreuil, J. (1975) Actes du Colloque C.N.R.S. sur la Méthodologie des Glycoconjugués, Villeneuve d'Ascq, 20-27 Juin 1973, C.N.R.S. éd., Paris, 483-499.
- [9] Mazurier, J., Spik, G. and Montreuil, J. (1974) FEBS Lett. 48, 262-265.
- [10] Bluard-Deconinck, J. M., Masson, P. L., Osinski, P. A. and Heremans, J. F. (1974) Biochim. Biophys. Acta 365, 311-317.
- [11] Graham, I. and Williams, J. (1975) Biochem. J. 145, 263-279.
- [12] Chéron, A., Mazurier, J., Fournet, B. and Montreuil, J. Biochim. Biophys. Acta (in press).
- [13] Crestfield, A. M., Moore, S. and Stein, W. H. (1963)
 J. Biol. Chem. 238, 622-627.
- [14] Edman, P. and Begg, G. (1967) Eur. J. Biochem. 1, 80-91.

- [15] Jollès, J., Schoentgen, F., Hermann, J., Alais, Ch. and Jollès, P. (1974) Eur. J. Biochem. 46, 127-132.
- [16] Boutigue, M. H., Jollès, J., Charet, P., Montreuil, J. and Jollès, P. (1976) Biochimie 58, 891-892.
- [17] Sutton, M. R. and Brew, K. (1974) FEBS Lett. 40, 146-148.
- [18] Williams, J. in Bluard-Deconinck, J. M., Osinski, P., Querinjean, P., Masson, P. and Heremans, J. F. (1975) Proc. 1st Int. Conf. 'Solid Phase methods in Protein Sequence Analysis' (Laursen ed.) Boston, p. 203-209.
- [19] Elleman, J. C. and Williams, J. (1970) Biochem. J. 116, 515-535.